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Abstract

In this paper, we describe how a Constraint Grammar with linguist-written rules can be optimized  and ported to another language
using a Machine Learning technique.  The effects of rule movements, sorting, grammar-sectioning and systematic rule modifications
are discussed and quantitatively evaluated. Statistical information is used to provide a baseline and to enhance the core of manual
rules. The best-performing parameter combinations achieved part-of-speech F-scores of over 92 for a grammar ported from English to
Danish, a considerable advance over both the statistical baseline (85.7), and the raw ported grammar (86.1). When the same technique
was applied to an existing native Danish CG, error reduction was 10% (F=96.94).
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1.  Introduction
Mature  Constraint  Grammar  (CG)  parsers  can  achieve
very  high  accuracy  (Karlsson  et  al.  1995),  but  contain
thousands of manually crafted rules and depend on large
amounts of expert labor. Input to a Constraint Grammar is
traditionally  provided  by  a  lexical-morphological
analyzer1 that  outputs tokens with one or more possible
readings (tag lines) attached. The task of a CG rule is then
to  contextually  remove  wrong  readings,  select  correct
ones,  and to add and disambiguate tags that can only be
inferred in a contextual  way, such as syntactic function,
dependency and semantic roles.

A typical CG rule contains an a target (word form, lemma,
tag or feature set), a tag/reading-manipulating action (e.g.
REMOVE,  SELECT,  MAP,  ADD,  SUBSTITUTE,
SETRELATION),  and  a  list  of  one  or  more  context
conditions  to  be  fulfilled  in  order  for  the  action  to  be
triggered.  Context  conditions  may  refer  to  words  or
features  at  an  arbitrary  distance  in  the  sentence  (or
beyond),  they may contain variables, regular expressions
or numerical (e.g. frequency) conditions, and they can be
negated, linked or conditioned as safe (referring only to
unambiguous  readings).  Finally,  unbounded  conditions
(i.e. without a distance position) may be "BARRIERed"
by  blocking  features.  The  following  (Spanish,  French,
German  or  Danish)  rule,  for  instance,  removes  target
readings that contain a finite verb  tag (VFIN2) in favour

1 In the CG3 variant of the Constraint Grammar formalism, the
introduction  of  variables  and  regular  expressions  makes  it
possible  to  perform  morphological  analysis  within  the
grammar itself,  but most systems only use this feature as a
reserve method to handle out-of-vocabulary tokens.

2 VFIN, NPHR and ATTR are not actual tags, but examples of 
tag sets defined by the grammarian. Thus, VFIN comprises 
tense tags such as PR (present) or PAST, ATTR contains 
adjectives and participles, and NPHR amounts to all parts of 
speech allowed in a noun phrase chain (N, ADJ, ART, DET 
etc.).

of a noun reading (N) - IF an article (ART) or determiner
(DET) is found to the left (*-1) with nothing but attributes
(ALL -  ATTR) inbetween  (BARRIER),  and  if  there  is
gender-number agreement ($$GN variable) between noun
and  article/determiner.  As  a  safety  measure,  a  second,
negative (NOT) condition is present disallowing a noun
phrase element (NPHR) at position 1 (i.e. immediately to
the right of the target).

REMOVE VFIN IF (0 N + $$GN) (*-1C3 ART OR DET
BARRIER ALL - ATTR LINK 0 $$GN)  (NOT 1 NPHR);

Since  Constraint  grammars  are  not  data-driven  in  the
statistical  sense  of  the  word,  domain  adaptation,  for
instance for speech (Bick 2012) or historical texts (Bick
2005), is traditionally achieved by extending an existing
general grammar and/or its lexicon. However, due to its
innate complexity, the general underlying grammar  as a
whole has properties that do not easily lend themselves to
manual modification. Changes and extensions will usually
be  made  at  the  level  of  individual  rules,  not  rule
interactions or rule regrouping, the effect of which is very
difficult for a human grammarian to predict. 

In particular, incremental contextual ambiguity reduction
may  activate  dormant  rules  waiting  for  unambiguous
context conditions to apply. Feed-back from corpus runs
will  pinpoint  rules  that  make errors,  and  even  allow to
trace the effect on other rules applied later on the same
sentence, but such debugging is cumbersome and will not
provide  information  on  missed-out  positive,  rather  than
negative,  rule  interaction.  Therefore,  optimization  of
rule-interaction  (i.e.  rule  management  at  the
grammar-level) is a major, and intrinsic, difficulty linked
to the Constraint Grammar approach.

3 The C means "unambiguous". With a C, the context would 
match also words that still have other readings on top of ART 
or DET.



In  (Bick  2013),  we  have  shown that  machine  learning
techniques  can  be  applied  to  monolingual  grammar
tuning,  even  with  reduced  grammars.  Building  on  this
research, we intend to show that ML is effective not only
for  optimizing grammars, but also for porting them from
one language to another, a task that can be regarded as an
extreme  variant  of  domain  adaptation.  For  the
experiments  presented  here,   we  have  ported  the
part-of-speech/ morphological  section  of  an  English
grammar (EngGram) into Danish, using a CG-annotated
section of  the Danish treebank (Arboretum, Bick 2003)
for training and evaluation.

2.  Related work
To date, little work on CG rule tuning has been published.
A notable  exception  is  the  µ-TBL system  proposed  in
(Lager  1999),  a  transformation-based  learner  working
with 4 different  rule operators,  and supporting not only
traditional  Brill-taggers  but  also  Constraint  Grammars.
The  system  could  be  seeded  with  simple  CG  rule
templates with conditions on numbered context positions,
but  for  complexity  reasons  it  did  not  support  more
advanced  CG  rules  with  unbounded,  sentence-wide
contexts,  barrier  conditions  or  linked  contexts,  all  of
which are common in hand-written Constraint Grammars.
Therefore, while capable of building automatic grammars
from rule templates and modeling them on a gold corpus,
the  system  was  not  applicable  to  existing,
linguist-designed CGs. 

That  automatic  rule  tuning  can  capture  systematic
differences  between  data  sets,  was  shown  by
Rögnvaldsson  (2002),  who  compared  English  and
Icelandic  µ-TBL  grammars  seeded  with  the  same
templates, finding that the system prioritized right context
and  longer-distance  context  templates  more  for  English
than  Icelandic.  For  hand-written  grammars,  rather  than
template  expression,  a  similar  tuning  effect  can  be
expected  by  prioritizing/deprioritizing  certain  rule  or
context  types  by  moving  them to  higher  or  lower  rule
sections,  respectively,  or  by  inactivating  certain  rules
entirely. 

Lindberg  &  Eineborg  (1998)  conducted  a  performance
evaluation with a CG-learning Progol system on Swedish
data  from  the  Stockholm-Umeå  corpus.  With  7000
induced REMOVE rules, their system achieved a recall of
98%.  An  F-Score  was  not  given,  but  since  residual
ambiguity was 1.13 readings per word (i.e. a precision of
98/113=86.7%),  it  can  be  estimated  at  92%.  Also,  the
lexicon was built from the corpus, so performance can be
expected to be lower on lexically independent data. 

Though all three of the above reports show that machine
learning can be applied to  CG-style grammars,  none of
them  addresses  the  tuning  of  human-written,  complete

grammars rather than lists of rule templates4. In this paper
we argue that this is possible, too, and that it can lead to
better results than both automatic and human grammars
seen in isolation.  In  particular  we  demonstrate that  ML
CG-tuning  is useful to create seeding grammars for new
languages from an existing template grammar in another
language. Though such a ported seeding grammar cannot
be expected to compete with mature taggers  directly,  it
does provide a robust basis for human grammar creation,
and  will  help  to  reduce  overall  development  time  for
high-quality  rule-based  taggers  for  under-ressourced
languages5. 

3.  Grammar optimization and adaptation
techniques

For our experiments, we divided the Danish gold corpus
(70.800 tokens) randomly into 10 sections, using 90% for
training and 10% for evaluation. Because of CPU runtime
constraints,  most  parameter  variations  were  tested  with
only one split,  but  for the best  parameter combinations,
10-fold  cross-validation  was  carried  out  with  all  10
possible splits.

For each individual training run, the CG-compiler was run
in trace mode, allowing the optimizer program to count
how often  each  individual  rule  was  used,  and  what  its
error  percentage  was.  Based  on  these  counts,  the
optimizer modified rule order  or rule strictness (i.e.  the
degree  of  context  ambiguity  allowed  for  the  rule  in
question).

3.1.  Rule movement
The following rule movements were implemented:

• (a) promote good rules: moving a rule up one section, 
i.e. allowing it to be applied earlier, before other, 
more heuristic rules

• (b) demote dubious rules: moving a rule down one 
section, i.e. having it apply later, after other, safer 
rules

• (c) remove bad rules from the grammar, by moving 
them to a special "kill" section.

Bad rules  were defined as rules  that  made more wrong
than correct choice, while rules were regarded as good or
dubious,  if  their  error  percentage  was  below  or  above
certain empirically established error percentages (12.5 and

4 One author, Padró (1996), using CG-reminiscent constraints 
made up of close PoS contexts, envisioned a combination of 
automatically learned and linguistically learned rules for his 
relaxation labelling algorithm, but did not report any actual 
work on human-built grammars.

5 Danish  is  a  small  language,  but  not  generally  regarded  as
under-ressourced. It was chosen as target language only as a
model,  and because a  gold  corpus  did  not  have  to  be
constructed  from scratch.  In  a  production  setting,  both  the
creation of a gold corpus and manual completion of the ported
grammar would be part of the work flow. 



25, respectively6). Training runs were iterated to allow a
rule  to  migrate  up  or  down  through  the  grammar's
different heuristicity sections. 

Of  course  it  is  also  possible  to  reorder  rules
simultaneously rather  than individually,  by sorting rules
according  to  a  quality  metric.  However,  experiments
showed that  it  is  difficult  to achieve positive effects by
sorting, at least when using actual rule error frequency as
the only parameter, probably because this method does not
really allow for the modeling of rule interaction - a rule
that performs well may do so only because previous rules
prevented it from making errors, which is why it needs to
be tested individually and moved up incrementally rather
than by sorting. Thus, sorting worked relatively best when
human rule ordering was taken into account,  by sorting
sections individually and by weighting rule quality with a
section factor. Only when each rule was run and evaluated
in isolation, did sorting work well, albeit at a prohibitive
time cost (20 hours, without iteration).

3.2.  Rule strictness
Due to the complexity of CG rules, and the vast amount of
possible context conditions, it  is  much more difficult  to
systematically vary, let alone create,  rules than to move
them. However, rules can be made more or less cautious
without  actually  changing  their  context  conditions,  by
adding  or  removing  the  so-called  C-option  for  the
individual  context  conditions.  For  instance,  "*-1  VFIN
BARRIER NON-ADJ/DET"  is  a  context  condition  that
looks left (*-1) until it finds a finite verb (VFIN), but can
be blocked (BARRIER) if a non-prenominal (defined as
something that is not an adjective or determiner) is found
in between. 

This condition can be made more cautions by using *-1C
or  less  cautious  by  using  CBARRIER.  The  former
restricts  the  VFIN  context  to  mean  only  unambiguous
finite verbs, while the latter relaxes the blocking condition
to  words  that  unambiguously  are  something  other  than
ADJ  or  DET.  The  optimizer  uses  C-relaxation  for
promoted (low-error) rules, and "C-stricting" for demoted
(high-error) rules, either in situ or by cloning the rule with
the changed C-condition. Obviously,  relaxed clone-rules
carry an added error risk, and are therefore added at the
end of the grammar, to be moved up in later iterations if
they  perform well.  A third  relaxation  technique  was  to
clone a rule by moving its wordform condition, i.e. letting
it  apply  in  general  rather  than  only  for  a  certain
problematic or high-frequency token.

3.3.  Translation
An obvious problem for a ported grammar is that all token
and lemma contexts, as well as word set definitions, are in

6 Raising the threshold improved recall, lowering it improved 
precision, but F-scores were lower in both cases.

the  wrong  language.  We  therefore  wrote  a
machine-translation  script  that  identified  and  translated
English  words  occurring  in  rules  or  definitions.  In
addition, an effort was made to translate tags for valency
potential,  since  these  may  contain  references  to
prepositions and adverbs. As can be seen in section 4, this
improved recall and decreased precision, with a combined
F-score effect that was negative for the baseline run, but
further  improved  optimized  grammars.  Apart  from  MT
errors, the likely reason for this is that English and Danish
are  not  "isomorphic"  enough  for  this  method  to  work
automatically  -  there  is  simply  no  guarantee  that
ambiguity  will  reside  in  the  same words,  or  that  verbs
bind the same prepositions. However, while we are only
concerned  with  automatic  tuning  here,  limited  human
effort  would suffice to  chose the correct  analogues and
improve performance. 

3.4.  Rule templates
Though the word class inventory of Danish is similar to
that  of  English,  there  is  no  guarantee  that  an  English
grammar will contain rules addressing all disambiguation
combinations that are relevant for Danish. Similarly, even
simple bigram contexts may be absent if they are relevant
only for Danish, and not for English. For instance, articles
are  unambiguous  in  English,  but  not  in  Danish,  where
they  exhibit  number  and  gender,  and  overlap  with
pronouns  and  numerals.  We  therefore  added  1024  rule
templates  with  ±1(C)  contexts,  for  all  possible  PoS
combinations,  to  the  ported  grammar  to  allow the  ML
system to fill in any coverage gaps.

4.  Results
To establish a baseline, we ran a mini-grammar with only
one rule (SELECT <fr=MAX>), choosing the most likely
reading for each token, based on corpus frequency. While
the  raw  English  grammar7 performed  only  marginally
better than this baseline when run on Danish input (with a
lower  recall  and  a  higher  precision),  it  improved
considerably  when  subjected  to  ML-optimization  (error
reduction amounting to 40% relative improvement). The
table below shows results for various tuning options on
top of rule killing (K), demoting (D), C-relaxation8 (r) and
C-stricting (s), with a 9:1 training-testing split for the gold
corpus9.

7 The Danish input contained frequency information,  and the
English template grammar used the SELECT <fr=MAX> rule
at  the  end,  to  remove  any  ambiguity  remaining  after  the
ordinary, context-based rules.  

8 Separating C and BARRIER relaxation was also tried, with no
marked difference. Adding relaxed rules in situ rather than at
the end, led to F-scores below the baseline.

9 Results  are  test  corpus performance at  that  iteration  where
training  corpus  performance  stabilized  or  peaked.  Slightly
higher test F-scores may occur at later or earlier iterations, but
using them to decide on the final grammar would make the
test corpus part of the training setup.



iteration Recall
(%)

Precision
(%)

F-score

fMAX baseline 0 88.67 82.94 85.71

raw ported 
grammar 

0 87.40 84.83 86.10

ported grammar 
with MT 
translations

0 90.65 81.37 85.76

DKrst,  -fMAX 7 94.45 84.00 88.92

PDKrs, +fMAX 7 91.76 88.99 90.35

PDKrst, -fMAX 6 91.77 89.11 90.42

PDKrst, +fMAX 10 92.45 89.75 91.08

PDKrsw, +fMAX 22 93.57 88.83 91.14

PDKrstw, 
+fMAX

14 92.20 90.29 91.23

PDKrstw, 
pos-ified fMIN

30 92.69 90.32 91.49

Table 1: Cross-language grammar porting: PDK
optimization plus variants

The  data  indicate  that  adding  rule  promoting  (P),
translation (t), frequency fail-safe (fMAX or fMIN) and
wordform relaxation (w) each individually contributed to
overall  F-score  improvement,  though  recall  in  isolation
can be further maximized by adding only using translation
to  a  simple  DKrs  combination.  The  top  result  was
achieved with a more cautious frequency fail safe, where
the lowest  frequency reading was removed for  each  15
PoS classes  separately,  rather  than  selecting the highest
frequency  reading,  allowing  the  safest  fMIN  rules  to
migrate up through the grammar. Tenfold cross-evaluation
confirmed  this  result,  with  an  F-score  increase  of  5
percentage  points  over  the  baseline,  corresponding  to  a
37% error reduction.

R dR P dP F dF

PDKrstw, pos-ified 
fMIN

92.65 4.94 90.46 5.16 91.54 5.05

PDKrstw, pos-ified 
fMAX

92.73 4.86 90.09 4.88 91.39 4.87

Table 2: 10-fold cross-validation

Finally,  two additional  techniques  were  tested  -  rule
templates  and  individual  rule  evaluation.  Both  beat  the
ordinary  optimization  runs,  but  while  the  template  run
profited from PDK movements in  an ordinary way,  the
individually sorted rules behaved more like a monolingual

human grammar in that they did not tolerate promoting10,
while still allowing slight increases from rule-killing and
demoting.

iteration Recall
(%)

Precision
(%)

F-score

individual rule sorting,
+fMAX

1 92.92 90.55 91.76

individual rule sorting,
+ unused rules

1 92.88 90.74 91.80

individual rule sorting,
+fMIN

1 93.04 90.69 91.85

PDKrstw, pos-ified 
fMIN, templates

5 93.11 91.35 92.22

individual rule sorting,
+PDKrstw
(i.e. no promoting), 
+fMAX,

18 93.68 91.14 92.39

Table 3: Rule templates and individual rule sorting

Of  course,  F-scores  of  around  92  do  not  approach
state-of-the-art  for  PoS  tagging,  which  for  many
languages can be as high as 96-97. However, it should be
born in mind that our method has been developed in the
framework  of  a  rule-based,  not  a  statistical  parsing
paradigm,  and  that  the  tuned  grammar  provides  a
reasonable  and  time-saving  point  of  departure  for  the
manual correction and addition of target-language rules.
Furthermore,  since  the  ML  technique  is
language-independent,  it  could  then  be  repeated  in  a
second  round  of  monolingual  optimization.  In  order  to
estimate  this  potential,  the  same  tuning  technique  was
applied  to  a  full-size,  native  Danish  CG.  In  this
experiment,  a  10%  error  reduction  was  achieved  even
with  an  input  grammar  that  performed  at  the  96%
accuracy level.

iteration Recall
(%)

Precision
(%)

F-score

Danish grammar before
optimization

0 97.65 95.44 96.54

PDKrsfw 1 97.61 95.77 96.68

PDKrsfw + fMAX 1 97.61 95.87 96.73

PDKrsfw + pos-ified 
fMIN

1 97.58 95.83 96.70

PDKrsfw + templates 1 97.58 95.83 96.70

DKrsfw (no promoting) 11 97.91 95.99 96.94

DKrsfw (no promoting) 14 97.91 95.99 96.94

10Possibly because a globally established rule order cannot be 
improved by changes that are only measured locally



iteration Recall
(%)

Precision
(%)

F-score

+ fMAX

Table 4: Monolingual results for a mature grammar
(Danish)

As could be expected in a mature grammar, templates and
additional  statistical  fail-safes  had  almost  no  effect
compared  to  rule  manipulation  on  its  own  (PDKrsfw).
Interestingly,  the  DK-run  was  the  only  one  with  a
sustained  iteration  gain,  indicating  that  promoting
low-error  rules  does  more  harm  than  good  in  a  full
grammar,  possibly  undoing  beneficial  effects  from
demoting. 

5.  Perspectives
Obviously, the grammar tuning achieved with the methods
presented  here  does  not  represent  an  upper  ceiling  for
performance increases. First, with more processing power,
rule  movements  could be evaluated  against  the training
corpus  individually  and  in  all  possible  permutations,
rather  than  in-batch,  eliminating  the  risk  of  negative
rule-interaction from other simultaneously moved rules11.
Second,  multi-iteration  runs  showed  an  oscillating
performance  curve  finally  settling  into  a  narrow  band
below  the  first  maximum  (usually  achieved  already  in
iteration 1 or 2, and never after 3). This raises the question
of local/relative maxima, and should be further examined
by making changes in smaller steps. Finally, while large
scale rule reordering is difficult to perform for a human,
the opposite is true of rule killing and rule changes such as
adding or removing C-conditions. Rather than kill a rule
outright  or  change  all  C-conditions  in  a  given  rule,  a
linguist  might prefer to change or add individual context
conditions to make the rule perform better, observing the
effect on relevant sentences rather than indirectly through
global test corpus performance measures. Future research
should therefore explore possible trade-off gains resulting
from  the  interaction  between  machine-learned  and
human-revised grammar changes.
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