
Turning Constraint Grammar Data into Running Dependency

Treebanks

Eckhard Bick

Institute of Language and Communication, University of Southern Denmark

eckhard.bick@mail.dk, Rugbjergvej 98, DK-8260 Viby J

1. Introduction

Traditional Constraint Grammar (CG) is a methodological, rather than a
descriptive paradigm, designed for robust parsing, not the implementation of
a specific linguistic theory. Therefore, if used for treebank generation, it is
not immediately clear, which linguistic formalism would be easiest to
support, and whether the same underlying CG (in this case VISL-style CGs)
can be used for different descriptive formats. In this paper, we present and
evaluate a grammar-based method that attempts to bridge the gap between
raw CG annotation and a full dependency structure annotation, allowing CG
output to be turned into regular dependency treebanks rather than the phrase
structure grammar-mediated constituent treebanks used by the VISL teaching
tools.

1.1. CG dependency styles

Since CG-rules address word based tags, all levels of linguistic information
have to be expressed as tags. Thus, syntactic structure is usually encoded as
function tags (subject, object etc.) with or without some directional
dependency information. However, since both dependency and constituent
information is implicit and underspecified in classical CG, added tools, or
manual revision, are necessary to create real treebanks from CG-annotated
text. In one approach, Tapanainen and Järvinen (1997), describe an integrated
parsing formalism (Finite Dependency Grammar, FDG) implementing full
dependency structure between words or Tesnière-style multi-word nuclei, but
most CG parsers, including the ones used by the author's VISL project, have
been optimised for what could be called ”robust shallowness”, i.e. a
maximally safe disambiguation of part of speech and syntactic function,
rather than deep/complete structure. Also, there is no shared standard as to
the handling of multi-word expressions, which remain lexical units rather
than syntactic nuclei or ”constituents”, calling for a simple, token-based
approach. The challenge, then, is a two-stage approach, where existing (CG-)
tools can be exploited to the full, to be subsequently enriched with deep-
structure information and adapted to a user-defined descriptive model of a
given language.

2. A CG-based treebank with full dependency specification

The Danish Arboretum treebank (Bick 2003-1) at the University of Southern
Denmark is maintained as a double-format treebank, where manually
corrected CG output from DanGram (Bick 2001) is used as input to a
specialised PSG (Bick 2003-2), and corrected once again at the constituent
tree level. The conversion into dependency treebank format is handled using
(”ordinary”) TIGER-XML constituent format as an intermediate format,
which in turn is filtered into the Nordic Treebank Network's recommended
TIGER dependency format (http://www.id.cbs.dk/~mtk/ntn/tiger-xml.html).

The problem with this method is that the cg2psg stage is somewhat less
robust than CG itself, producing around 80% well-formed trees even for
corrected CG input, and 50-70% on raw text. Therefore, we have examined
the possibility of adding full dependency information directly to the CG
format, without a PSG stage. This task has earlier been addressed with a
declarative, Prolog-based method by Søren Harder1, but for the sake of
robustness, a new, procedural system (cg2dep), with a compiled grammar of
sequential attachment rules, has been developed by the author. From a
theoretical point of view, it must be stressed that both the cg-to-psg and the
cg-to-dependency methods have been implemented as linguist-written
grammars and can be classified as ”structure-after-function”.

In the example below, the CG-function tag is supplemented by a dependency
link specifying a target head (->) for each token (number #).

Når [når] KS @SUB #1->4
Sofies [Sofie] PROP GEN @>N #2->3
mor [mor] N UTR S IDF NOM @SUBJ> #3->4
var [være] V IMPF AKT @FS-ADVL> #4->9
sur [sur] ADJ UTR S IDF NOM @<SC #5->4
over [over] PRP @A< #6->5
et=eller=andet [en=eller=anden] DET NEU S NOM @P< #7->6
$, #8->0
skete [ske] V IMPF AKT @FS-STA #9->0
det [den] PERS NEU 3S NOM @F-SUBJ #10->9
at [at] KS @SUB #11->13
hun [hun] PERS UTR 3S NOM @SUBJ> #12->13
kaldte [kalde] V IMPF AKT @FS-<SUBJ #13->9
deres [de] PERS 3P GEN @>N #14->15
hus [hus] N NEU S IDF NOM @<ACC #15->13
for [for] PRP @<OC #16->13
et [en] ART NEU S IDF @>N #17->19

1Søren Harder's system, the Depsplicator, was developed as part of a Ph.D. project
and is accessible in the Danish machine analysis section of http://visl.sdu.dk.

værre [dårlig] ADJ COM nG nN nD NOM @>N #18->19
menageri [menageri] N NEU S IDF NOM @P< #19->16
$. #20->0
</s>

3. The rule formalism

The basic idea of the formalism is that a grammar of ordered rules tells CG
tags (especially function tags) which other tags they can attach to, and in
which direction, left or right:

(a1) @<ACC -> (<mv>) IF (L)
(a2) @SUBJ> -> (PR,IMPF) IF (R)

The first rule attaches left-pointing direct object tags (@<ACC) to the next
free main verb head target (<mv>), if it can be found to the left (L) without
creating circular dependencies. As the second, subject attaching, rule shows,
targets can be sets, like verb tenses (PR,IMPF). The grammar contains a set
definition section, where set names can be defined:

(b) ¤LEFT-NPHEAD =
@P<,@<SUBJ,@<ACC,@<DAT,@<SC,@<OC,@APP,@N<PRED

It is important to note that both the to-be-attached dependent candidate and
the to-be-found head candidates allow what in other formalisms might be
called subcategorisation or selection restrictions, the distinction simply being
a question of including different types of tags in the match-string. Thus, a
verb tense tag like PR (present) can be combined with a morphological tag
like PAS (passive) or a valency-potential tag like <vt> (monotransitive verb).
Likewise, a function tag like @SUBJ can be semantically restricted as human
by prepending <H.*> (i.e. <H.*> @SUBJ), matching the categories of
<Hprof> (professions), <Hfam> (family relations), <Hideo> (supporter of
ideology, e.g. 'kommunist') etc.

3.1. Context conditions

Apart from the direction condition (L,R), some other types of context
conditions have been implemented:

(c1) @FS-@N< -> (¤NPHEAD, N.*@N<)
IF (L) TRANS:(@SUBJ>,@F-SUBJ>,@S-SUBJ>)

(c2) @ADVL> -> (<mv>)
IF (R) BARRIER (@SUBJ>,@F-SUBJ>,@S-SUBJ>

(c3) <np-close> -> (DET)
IF (L) HEADCHILD=(@>N)

(c4) @N< -> (N,PROP,PERS,INDP,¤NPHEAD)
IF (L) NOTHEAD=(<clb>) NOTTARGET=(@FS-@N<)

The TRANS condition identifies tokens that have to be ”crossed” before
attachment to a legal head is allowed. In the example (c1), a relative clause
(@FS-N<) is prevented from attaching to its own subject (while still being
allowed to attach to the next subject). The BARRIER condition is the
opposite of the TRANS-condition: It will stop the search for a suitable head
in the direction given. In the example (c2), right adverbial attachment to main
verbs is blocked by subject. The HEADCHILD condition in the third rule
(c3), finally, allows postnominal (pp-) attachment to the non-standard head
candidate determiner (DET), if the determiner has itself a prenominal
modifier (@>N) and thus, status of np-head. Finally, conditions can be
negated. In the most general postnominal attachment rule (c4), for instance,
there is a condition (NOTHEAD) preventing attachment to e.g. relative
pronoun subjects (<clb>), and another one (NOTTARGET) excluding
verbal heads of relative clauses (@FS-@N<) as rule targets altogether.

3.2. Forced and inverted attachment

(d1) <quote> -> (@FS-@STA,<v-quote>)IF (R) (F)

(d2) (PR|IMPF).*@FS-@N< -> (@SUBJ>,@[FS]-SUBJ>)
IF (L) (D) BARRIER:(@>>P,PR,IMPF)

The formalism also allows to ”force” (F) or ”invert” rules (D). Forced
attachments cannot be undone, and win over possible competitors in
circularity contests, while D-rules search from head to dependent rather than
the other way around. Thus, a forced dependency connection (d1) is
established between quoted clauses <quote> and the quoting verb <v-quote>
or, if un-annotated, the top node verb (@STA) to the right, preventing closer,
but wrong attachment to an intervening subclause verb.

Since attachment targets are ”tested” on a sentence' words working left to
right, a finite verb, when it finds an unattached subject to the left, can safely
assume this to be the correct subject daughter, while the inverse is not true - a
subject may have to attach to a verb mother several verbs further to the right,
in the case of embedded relative clauses. This fact is exploited in (d2), where
reverse attachment is used to find the subject of a relative clause (@FS-
@N<)2.

2Note the BARRIER condition disallowing fronted arguments of prepositions
(@>>P), which may indicate a subject-less clause as in ”et råstof, der skal kæles
for”.

3.3. Segment delimiters

In principle, semantic-syntactic dependency-relations could be established
across a whole text. However, in practice, our corpus annotation employs a
segmentation into sentences or verb-less utterances as part of the CG-
annotation, and these segments will be respected as window limits for the
dependency annotation, too. However, in preformatted corpora, as the
Korpus90/2000, or the paragraph-divided Europarl corpus, more than one
sentence may be present in one corpus chunk. To handle these cases, while at
the same time allowing list annotation or utterance chaining where desired,
the dependency grammar formalism provides for a list of delimiters (e1),
which may be used to block unwanted attachment across sentence
boundaries, as in rule (e2) which attaches statements (@STA) to verbless
nominal (@NPHR) or adverbial (@ADVL) utterances.

(e1) ¤DELIMITER = \$\. , \$\! , \$\? , \$:, \$;

(e2) @STA -> (@NPHR,@ADVL) IF (L) BARRIER:(¤DELIMITER)

4. The rule compiler

4.1. Compiler principles

Sets and rules from the grammar are compiled and implemented on CG-input
by a perl-program (cg2dep) that creates dependency links between tokens, the
final output format being an additional tag in the list of word based CG tags,
containing a number relation (e.g. #7->4, meaning token number 7 is a
dependent of token number 4). In an actual run, word tokens are matched
against targets from left to right, first in an ordered sequence of target
batches, then once more, in simple token-driven order. Target ordering and
iteration help to avoid or detect circular attachment, i.e. attachment
hierarchies, where a daughter ultimately has itself as ancestor.

Though this program is, in principle, language and grammar-independent, it
is not entirely theory-free, since it has to make certain assumptions/decisions
about dependency grammar theory. First, more generally, it is assumed that
each dependent has one and only one head, that dependencies can cross (non-
projectivity), and that heads can be ”saturated” with certain types of
dependents (clause function uniqueness principle, verb chains). Second,
certain more theory-dependent descriptive issues had to be normalized, most
important coordination, where both the coordinator and all following
conjuncts were attached to the first conjunct. This solution has the advantage
of being able to handle coordination without coordinators and of maintaining
both the link between what is coordinated (sister-relation) and, through first-

conjunct-inheritance, the semantically important link between mother and all
coordinated daughters.

4.2. Coordination and tag insertion

Coordination is notoriously one of the more difficult tasks in syntactic
annotation. To prevent over-generation in psg-grammars and spurious
attachment i the dependency grammar, a special CG module marks
coordinators for what they coordinate. These tags are then exploited to first
attach coordinators to the correct (right hand) conjunct (f1-2), and
subsequently, to make right hand conjuncts to look for left hand matches (f3),
i.e. tokens of the same function, to the left of the flagged coordinator.

(f1) <co-acc> -> (@ACC>,@<ACC) IF (R)

(f2) <co-inf> -> (INF) IF (R)

(f3) <cjt>.* @FS-ADVL> -> (@FS-@ADVL>) IF (L)

The <cjt> tag is automatically added to a token, when it either receives a
coordinator daughter or a dependency link to/from another token of the same
function. Thus, the <cjt> tag in (f3) stems from rule (f2) and allows right
pointing adverbial clauses to attach left to a conjunct-head rather than right to
a verb. Left-pointing tokens may also find their conjunct head simply by not
encountering a legitimate head to the left before another same-function token
blocks the path. Here, the uniqueness principle will be used to only let the
leftmost token attach to the (joint) head, and conjunct-attach all other (right-
hand) conjuncts to the first, marking both the former and the latter with the
<cjt> tag. Though this principle is hard-wired into the compiler program
executing the dependency grammar, other ways of expressing conjunct
dependencies can easily by achieved by post-filtering. Thus, we employ
”flat” attachment of conjuncts to a common head for semantic reasons in our
machine translation application. Finally, <cjt> tags may be added in adirect,
rule-governed way by using the ADD convention:

(g) @SUBJ> -> (PR,IMPF) IF (L) (ADD:<cjt>)

5. Evaluation

To evaluate the performance of the cg2dep compiler and the coverage of its
grammar, a small random text sample was extracted from Korpus903,
consisting of 1437 words (1663 tokens, 124 sentences) of news text. A gold-
standard corrected annotation was built for both the CG and dependency

3Korpus90 is part of a Danish corpus compiled by DSL for lexicographical work
(www.dsl.dk), and constitutes one half of the Korpus90/2000 project
(www.korpus2000.dk and corp.hum.sdu.dk).

levels. In a complete run on raw text, where complete disambiguation was
forced, the combination of DanGram and the cg2dep stage achieved 95%
accuracy for edge labels, 99.4% for PoS, and 93% for dependency
attachments.

1437 words
1663 tokens

errors accuracy
(words, not tokens,

out of all)
Part of speech
- on raw text

10 99.4 %

Syntactic function (edge label)
- on raw text

73 95 %

Dependency (attachment)
- on raw text

102 93 %

Dependency
- on function-corrected input

20 98.7 %

If the dependency stage was run on CG input with corrected function labels,
attachment accuracy was 98.7%. This error rate of 1.3% is a third lower than
the difference in percentage points (2%) between edge label errors (95%) and
attachment errors (93%) in the full run, indicating the importance of a good
syntactic CG stage. The percentage of sentences without any attachment
errors was 64.8% in a full run, 90.4% for cg-corrected input.

More generally, our results indicate that the depencency stage is
somewhat better at building complete structures from cg-annotated input than
VISL's traditional PSG-stages, while at the same time being about 30 times
faster. Thus, the latter produced well-formed psg structures from cg-corrected
input in 81.6 % of all sentences in the test-sample, while the former achieved
90.4 % complete and correct dependency structures. Obviously, ”well-
formed” does not necessarily mean ”correct”, so in order to perform a direct
comparison of dependencies, psg-output was converted into TIGER-format
dependency trees, using VISL's various format filters
(http://visl.sdu.dk/visl2/treebanks.html). The psg-derived dependency-trees
for function-corrected input were complete in 93.6 % of sentences and
correct in 75.1 %4. For raw text, the difference between the direct cg2dep
method and the intermediate-psg approach was less marked, with 64.8 % and
58.4 % correct sentences, respectively. Individual attachments with the
intermediate psg were correct in 86.2% for raw text, and in 92.3% for
function-corrected cg-input, i.e. about half as good as in the direct approach
(93% ad 98.7%, respectively).

4 Individual attachments were correct in 86.2% for raw text, and in 92.3% for
function-corrected cg-input.

http://visl.sdu.dk/visl2/treebanks.html

percentage of sentences with: cg2dep cg -> psg -> dep cg -> psg
complete structures
- from raw text

88 % 89.6 % 72.8 %

complete structures
- on function-corrected cg

96 % 93.6 % 81.6 %

complete & correct
- from raw text

64.8 % 58.4 %

complete & correct
- on function-corrected cg

90.4 % 75.1 %

6. Exchange formats

Bypassing the PSG- and TIGER-XML constituent formats, we have written
two new format filter programs for VISL's token based dependency tag
format, both maintaining full information-equivalence (http://beta.visl.sdu.dk/
treebanks.html). One exports to the Malt-XML format (http://w3.msi.vxu.se/
~nivre/research/MaltXML.html) by simply creating an xml-attribute structure
around the VISL-tags. The other exports to TIGER-xml, as recommend by
the Nordic Treebank Network (http://w3.msi.vxu.se/~nivre/research/nt.html),
creating ”non-terminals” by re-writing heads as ”self-dependents”, and
daughters as constituents, while using CG function labels as edge labels, and
part of speech as category label. For both MALT and TIGER formats, the
original CG function tag of second or later conjuncts is replaced by 'CJT'.

7. Outlook

The full dependency format is used for the dependency version of the Danish
Arboretum treebank (now 423.656 tokens, 21.757 sentences). At the time of
writing, automatic adding of full dependencies leads to circularity problems
in about 1 percent of sentences, a problem which will have to be addressed
either by improving the dependency grammar itself, or by linguistic revision
of its output.

The numbered dependency format has also proven useful, in an ongoing
Danish-English MT-project, for grammar based polysemy resolution and
translation equivalent differentiation. Here, lexical transfer rules make use of
head-, daughter-, sister- and higher level dependency relations in order to
express context-dependent function- and semantic prototype class restrictions
on possible target language translation equivalents.

Finally, a pilot study has shown that the numbered dependency format
contains the necessary information for a filter program, without external
grammatical rules, to create PSG-style constituent-tree structures from such
data. A new round of evaluation should therefore add a comparison of direct

http://w3.msi.vxu.se/~nivre/research/nt.html
http://w3.msi.vxu.se/~nivre/research/MaltXML.html
http://w3.msi.vxu.se/~nivre/research/MaltXML.html
http://w3.msi.vxu.se/
http://beta.visl.sdu.dk/treebanks.html
http://beta.visl.sdu.dk/treebanks.html
http://beta.visl.sdu.dk/

and indirect5 PSG-formats to the comparison of direct and indirect
dependency-formats discussed in this paper.

References

Bick, Eckhard (2001). ”En Constraint Grammar Parser for Dansk”. In:
Widell, Peter & Kunøe, Mette (ed.): 8. Møde om Udforskningen af Dansk
Sprog. Århus: Århus Universitet 2001.

Bick, Eckhard (2003-1), “Arboretum, a Hybrid Treebank for Danish”. In:
Joakim Nivre & Erhard Hinrich (eds.), Proceedings of TLT 2003 (2nd
Workshop on Treebanks and Linguistic Theory, Växjö, November 14-15,
2003), pp.9-20. Växjö University Press

Bick, Eckhard (2003-2). “A CG & PSG Hybrid Approach to Automatic
Corpus Annotation”. In: Kiril Simow & Petya Osenova (eds.),
Proceedings of SProLaC2003 (at Corpus Linguistics 2003, Lancaster), pp.
1-12

Tapanainen, Pasi (1999). Parsing in two frameworks: finite-state and
functional dependency grammar. University of Helsinki, Deparment of
General Linguistics

Tapanainen, Pasi and Timo Järvinen. (1997). ”A non-projective dependency
parser”. In: Proceedings of the 5th Conference on Applied Natural
Language Processing, pages 64–71, Washington, D.C., April. Association
for Computational Linguistics.

5 Indirect here means the use of an intermediate PSG stage in dependency annotation
or the use of an intermediate (full) dependency stage in PSG annotation. Hower, both
the direct and indirect methods depart, in our approach, from a CG stage expressing
shallow dependency syntax.

