
Using Constraint Grammar for Treebank Retokenization

First Author
Affiliation / Address line 1
Affiliation / Address line 2
Affiliation / Address line 3

email@domain

Second Author
Affiliation / Address line 1
Affiliation / Address line 2
Affiliation / Address line 3

email@domain

Abstract

This paper presents a Constraint
Grammar-based method for changing the
tokenization of existing annotated data,
establishing standard space-based
tokenization for corpora otherwise using
MWE fusion and contraction splitting for
syntactic transparency or semantic
reasons. Our method preserves ingoing
and outgoing dependency arcs and allows
the addition of internal tags and structure
for MWEs. We discuss rule examples and
evaluate the method against both a
Portuguese treebank and live news text
annotation.

1 Introduction

In an NLP framework, tokenization can be
defined as the identification of the smallest
meaningful lexical units in running text. Tokens
can be both words, symbols or numerical
expressions, but there is no general consensus on
what constitutes a token boundary. For instance,
are "instead of" or "Peter Madsen" 1 or 2 tokens?
Should German "z. B." (for example) be 2 tokens
and English "e.g." 1 token, just because the
former contains a space? What about a word that
allows optional space (insofar as vs. in so far
as)? Far from being a merely theoretical issue,
tokenization conventions strongly influence
parsing schemes and results (e.g. Grefenstette &
Tapainen 1994). Thus, contextual rules become
simple (and therefore safer) when faced with
single-token names, conjunctions and
prepostions rather than complex ones.
Conversely, contractions such as Portuguese "na"
(= em [in] a [the]) can only be assigned a
meaningful syntactic analysis when split into

multiple tokens, in this case allowing the second
part (the article) to become part of a separate np.

Tokenization is often regarded as a necessary
evil best treated by a preprocessor with an
abbreviation list, but has also been subject to
methodological research, e.g. related to finite-
state transducers (Kaplan 2005). However, there
is little research into changing the tokenization of
a corpus once it has been annotated, limiting the
comparability and alignment of corpora, or the
evaluation of parsers. The simplest solution to
this problem is making conflicting systems
compatible by changing them into "atomic
tokenization", where all spaces are treated as
token boundaries, independently of syntactic or
semantic concerns. This approach is widely used
in the machine-learning (ML) community, e.g.
for the Universal Dependencies initiative
(McDonald et al. 2013). The method described in
this paper can achieve such atomic tokenization
of annotated treebank data without information
loss, but it can also be used for grammar-based
tokenization changes in ordinary annotation
tasks, such as NER.

2 Retokenization challenges

What exactly atomic (space-based)
retokenization implies, is language-dependent,
and may involve both splitting and fusion of
tokens, for fused MWE's and split contractions,
respectively. While the former, not least for
NER, is a universal issue, the latter is rare in
Germanic languages (e.g. aren't, won't), but
common in Romance languages. In both cases,
the retokenization method should conserve
existing information, i.e. MWE boundaries in
one case, and morphosyntactic tags of
contraction parts in the other. Linguistically,

token-splitting is the bigger problem, because it
needs added information: (a) partial POS tags,
(b) additional internal dependency links and (c)
new internal hook-up points for existing
outgoing and incoming dependency links. Unlike
simple tag conversion for, say, morphological
features, this cannot be achieved with a
conversion table.

3 CG retokenization

Our solution is based on two unique features of
the CG3 compiler (Bick & Didriksen 2015). The
first allows context-based insertion, deletion and
substitution of cohorts (token + 1 or more
readings), and was originally intended for spell-
and grammar-checking. Thus, we implemented
token fusion by either inserting a (new) fused
token and then removing all original tokens, or
by substituting a token with a larger, fused one
containing the subsequent token (rules 1), then
removing the latter (rule 2). The other feature
introduces cohort splitting rules and was added
specifically for retokenization. Such a rule can
specify how to split a target token and
manipulate its parts using regular expression
matching (rule 3). In a separate rule field, a
dependency chain is stipulated across the split
token.

3.1 Multi-word expressions

How an MWE is to be split, obviously depends
on its POS and composition. A simple case are
name chains entirely made up of proper nouns.
Here, (part) lemmas equal (part) tokens, and
internal structure is simply a left- (or right-)
leaning dependency chain. With other word
classes, however, there may be inflection and
complex internal structure. The Portuguese
proper noun-splitting rule (1a), for instance,
breaks up TARGET named entities (NE) of the
type PROP+PRP+PROP (e.g. "(Presidente do)
Conselho de Administração" [Administrative
Council President]) - if necessary, iteratively.
The asterisk for part 1 means that the first part
inherits all tags (pos, edge label, features) from
the NE as a whole, while c->p means that it also
inherits incoming child (c) and outgoing parent
(p) dependencies. For parts 2 and 3, independent
new POS tags (PRP, PROP) and syntactic
function labels (@N<, @P<) are provided. All
parts receive a numbered MWE id (<MWE1>,
<MWE2> etc.), and the original MWE token is
retained in a separate tag (<MWE:...>. Note that
the new parts may themselves be MWEs,

needing further splits. Contractions contained in
a NE (do [of the_sg_m], pelas .. [by the_pl_f])
need to be split (1c), in order to be treated like
other, "free" contractions in the corpus. (1c)
starts with a default male singular reading which
is "corrected" by (1d) into female and/or plural
where necessary.

Rule (1b) targets a complex adverb, dali para
diante [from here onward, from now on],
performing not only a 3-way split on space, but
also splitting the contraction dali (de+ali
PRP+ADV). The '*' on the first part means that it
will inherit form and function tags from the
MWE as a whole, and "c->p" means it will also
inherit both incoming (child) and outgoing
(parent) dependencies.

(1a) SPLITCOHORT:multipart-prop (
"<$1>"v "$1"v <MWE1><MWE:$1=$2=$3>v * c->p
"<$2>"v "$2"v <MWE2> PRP @N< 2->3
"<$3>"v "$3"v <MWE3> PROP @P< 3->1)
TARGET ("<(.+?)=(aos?|às?|com|contra|d[eao]s?|em|
n[ao]s?|para)=(.*)>"r PROP /\(@.*\)/r) ;

(1b) SPLITCOHORT:three->fourpart-adv(
"<$1e>"v "de"v <sam-> <MWE1> <MWE:
$1$2=$3=$4>v PRP VSTR:$5 1->p
"<$2>"v "$2"v <-sam> <MWE2> ADV @P< 2->1
"<$3>"v "$3"v <MWE3> PRP VSTR:$5 @P< 3->1
"<$4>"v "$4"v <MWE4> ADV @P< c->3)
TARGET ("<([dD])(ali)=(para)=([^=]+?)>"r ADV \
(@.*\)/r) ;

(1c) SPLITCOHORT (
"<por>" "por" <sam-> <MWEprp> PRP @N< c->p
"<$1>"v "o" <-sam> <artd> <MWEdet> DET M S
@>N 2->p)
TARGET ("pel([ao]s?)"r) (0 PRP OR N/PROP) ;

(1d) SUBSTITUTE (M) (F)
TARGET ("<.*[aà]s?>"r <MWEdet>) ;

3.2 Contractions

Fusion of tokens does not add linguistic
information, and a function tag can simply be
inherited from the head token of the to-be-fused
words. Still, CG rules like (2-3) are an effective
option for this purpose, too, because the
formalism will automatically handle the resulting
dependency number adjustments for the rest of
the tree, and morphophonetic changes can be
addressed where necessary. Here, we use fusion
rules to reassemble Portuguese contractions that

were split into lemma parts in the original
treebank (marked <sam-> for 1. part and <-sam>
for 2. part. Thus, (2a) creates a compound POS
for the contraction, substituting it for the
preposition POS of the contraction's first part.
(2b-c) then fuse the tokens "por" and "as" into
"pelas", and (2d) creates a compound lemma for
the contraction. (3), finally, removes the now-
superfluous second part token.

(2a) SUBSTITUTE (PRP) (PRP_DET)
TARGET (<sam->) (1 (<-sam> DET)) ;

(2b) SUBSTITUTE
("<$1>"v) (VSTR:"<$1$2>")
TARGET ("<(.*)>"r PRP_DET)
(1 ("<(.*)>"r <-sam>)) ;

(2c) SUBSTITUTE
("<por$1>"v) (VSTR:"<pel$1>")
TARGET ("<por(.*)>"r PRP_DET) ;

(2d) SUBSTITUTE ("$1"v) (VSTR:"$1+$2")
TARGET ("([^<]+)"r PRP_DET)
(1 ("([^<]+)"r <-sam>)) ;

(3) REMCOHORT REPEAT (<-sam>)
(-1 (/^PRP_.*$/r) OR (PERS_PERS)) ;

4 Evaluation and statistics

When run on the Portuguese Floresta Sintá(c)tica
treebank, with 239,899 tokens, our retokenizer
resolved all 8779 MWEs into their 21954 parts
(2.50 per MWE), and reestablished all 15912

contractions. The process took 33.6 seconds on a
2-core laptop, amounting to a processing speed
of 7140 words/sec. In combination with a live
parser run, on a Portuguese newstext corpus with
~ 1.1 million tokens, the method handled 44826
MWEs of similar complexity (109320 parts, 2.44
per MWE), missing out on only 273 (0.6%)
MWEs. The failure rate for contractions was a
negligible 0.01% (with 76610 successful
fusions).

References

Bick, Eckhard & Tino Didriksen. 2015. CG-3 -
Beyond Classical Constraint Grammar. In: Beáta
Megyesi: Proceedings of NODALIDA 2015, May
11-13, 2015, Vilnius, Lithuania. pp. 31-39.
Linköping: LiU Electronic Press. ISBN 978-91-
7519-098-3

Grefenstette, Gregory & Pasi Tapanainen. 1994. What
is a word, what is a sentence? Problems of
tokenization. Proceedings of the 3rd Conference on
Computational Lexicography and Text Research
(COMPLEX'94), Budapest. pp. 79-87

Kaplan, Ronald M. 2005. A method for tokenizing
text. In: Festschrift in Honor of Kimmo
Koskenniemi’s 60th anniversary. CSLI Publications,
Stanford, CA. pp. 55-64

McDonald, Ryan et al. 2013. Universal dependency
annotation for multilingual parsing. In:
Proceedings of ACL 2013, Sofia. pp. 92-98

